
1 
 

 
 

 

Data-driven PAM4 SerDes 

Modeling with Generative 

Adversarial Network  

 
 

 

Yongjin Choi,    Hewlett Packard Enterprise 

(yongjin.choi@hpe.com) 

 

Priyank Kashyap,   North Carolina State University 

(pkashya2@ncsu.edu) 

 

Wenzhen (Shawn) Sun,  Tektronix 

(shawn.sun@tektronix.com) 

 

Muhammad Saad Chughtai, Tektronix 

(muhammad.saad.chughtai@tektronix.com) 

 

Chris Cheng,    Hewlett Packard Enterprise 

(chris.cheng@hpe.com) 

 

Pual Franzon,    North Carolina State University 

(paulf@ncsu.edu) 

mailto:yongjin.choi@hpe.com
mailto:pkashya2@ncsu.edu
mailto:shawn.sun@tektronix.com
mailto:muhammad.saad.chughtai@tektronix.com
mailto:chris.cheng@hpe.com
mailto:paulf@ncsu.edu


2 
 

Abstract    
This paper will describe a novel method to model complex PAM4 SerDes using 

Conditional Generative Adversarial Networks (CGAN). Modeling is based on deep 

learning using data from test instrument captures or chip internal measurements. No 

knowledge of the SerDes equalizer structures such as CTLE or DFE is required to generate 

the model. Instead, two modules create the model: a generator that learns the distribution 

of the dataset and generates samples like the ground truth, and a discriminator that 

distinguishes whether a sample presented to it is fake or real. Together the two modules 

play a min-max game, where they try to outperform each other. The CGAN achieves 

convergence when the generator produces results below a detection accuracy threshold of 

the discriminator. The CGAN is conditioned on the input waveforms and the SerDes 

equalizer tap settings, and as such, the outputs of the CGAN change based on the tap value. 

A PAM4 SerDes is trained based on various channel and tap conditions. The data driven 

deep learning CGAN engine is generative and can produce Bit-Error-Rate (BER) contour 

outputs indistinguishable from the ground truth PAM4 BER contour measurements, even 

when presented with a previously unseen channel condition input waveform and 

equalization setting. 
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1. Introduction 
 

As high-performance-computing and artificial intelligence platforms continue to require 

higher data rate between the chips, high-speed physical link specification has adopted Pulse 

Amplitude Modulation with 4 levels (PAM4) signaling [1]. Compared to binary non-

return-to-zero (NRZ) signaling, the reduced signal margin in PAM4 requests more 

sophisticated receiver (Rx) circuits in that three signal eyes are individually tuned for the 

maximum signal-to-noise ratio (SNR).  To concurrently optimize SNR of three eyes, Rx 

implements many control knobs that tune the circuits.  Given the channel condition, we 

evaluate how well Rx circuits could recover distorted signals, with the PAM4 Rx model.  

Note that the channel is the medium between transmitter (Tx), Rx, and the surroundings.   

 

The reduced SNR of PAM4 and the nonlinear channel/component effects require more 

accurate link evaluation by the time-domain (or bit-by-bit) simulation, not by the statistical 

simulation based on the impulse response.  As the conventional approach using IBIS-AMI 

model (I/O Buffer Information Specification Algorithmic Model Interface) has developed 

with LTI (linear time invariant) and the single bit response [2], the predicted performance 

could be too optimistic for some channel conditions.   

 

To overcome the limitation of the conventional IBIS-AMI model, we propose the data-

driven modeling (DDM) of PAM4 Rx.  The DDM, also called black-box modeling is to 

construct the model with the empirical dataset of system input /output. Since the system 

input/output relationship is only described by the experimental data, DDM does not need 

to include the sensitive design details, thus well protecting intellectual property.  No 

assumption of LTI in DDM will generate the well-correlated output by incorporating the 

nonlinear effects from the measured data. The conditional generative adversarial network 

(CGAN) can model a receiver with complex equalization circuits such as CTLE and DFE 

with a single trained model based on encoded input and output images. With the generative 

nature of the model, it can interpolate intermediate equalization configuration and handle 

unseen channel loss, crosstalk conditions and varying bit-streams. 

 

The contributions of our work are listed as follows: 

 Our proposed model is the first data-driven, deep learning PAM4 model using 

Generative Adversarial Networks. 

 For generating the model, GAF images converted from input waveforms are used 

as the input and BER contour images as output. They are data driven without 

needing to understand the underlying design knowledge. 

 We demonstrate that the model is well-correlated to the various channel conditions 

and equalization settings by varying the loss, crosstalk, and equalizer gains. 

 Our model output, BER contours will obviate the time-domain or bit-by-bit 

simulation, thus saving the engineering time. 

The rest of the paper is as follows. Section 2 contains a brief discussion of prior work and 

the necessary background. Section 3 presents the proposed method, and section 4 discusses 

the PAM4 measurement setup and dataset generation process. Section 5 discusses the 
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cross-validation test set up and the resulting outputs vs. ground truth measurements. Finally, 

Section 6 concludes the paper and presents a brief overview of future work. 

2. Background 

Before describing how the GAN model is implemented in detail, we will introduce some 

topics that help the model generation. 

 

2.1 BER (Bit-Error-Rate) 

Previously, high-speed link performance was evaluated with the measured waveform at the 

input to the receiver with a sampling scope.  The waveform is divided by the symbol period 

in time and overlaid each other, which is called eye diagram. The bigger open area at the 

center of the eye diagram implies the higher margin of the link.  But as the link speed 

increases together with the challenging channel conditions, the eye diagram at the receiver 

input will frequently become the closed eye, thus no longer a good metric of the link 

performance.  As an alternative, we can use BER contour [3].  BER contour is generated 

by sweeping the phase of the sampling clock and the threshold voltage that decide the logic 

values.  Here we assume Rx circuitry has a feature to collect the error counts corresponding 

to a 2-dimensional sweep of the sampling clock phase and the threshold voltage.  At each 

sweep point that samples the logic value, Rx counts the number of errors by comparing the 

expected logic values with the measured logic values. 

 

2.2 GAF (Gramian Angular Field) 

As the machine learning architecture was mainly developed for the computer vision or 

image classification, images are commonly utilized as the input to the architecture.  To take 

advantage of the developed architecture with the time-series as an input, we need a 

mathematical expression that represents the time-series as images.  As suggested in [4], 

GAF was selected for converting the time-series into images.  GAF is linked to the inner 

product and Gram matrix.  The inner product measures the similarity between two vectors, 

and the elements of Gram Matrix consist of the pair-wise inner product of n vectors.  If we 

consider n as the nth time index, as the time increases, the matrix is calculated from top-

left element to bottom-right element of Gram Matrix. Thus the temporal dependency is 

kept by the element locations.  Since Gram Matrix produces the Gaussian noisy image, we 

need to encode the time-series into the polar coordinates first before applying Gram matrix 

like structure, which is GAF [5].   

When 𝑋 = {𝑥1, … 𝑥𝑖 … , 𝑥𝑁} is a time-series scaled to [-1,1] with a min-max scaler (Fig. 1 

(a)), the time-series is mapped into polar coordinate by the following rule (Fig. 1 (b)): 

 

{
𝑟𝑖 = 𝑖/𝑁

∅𝑖 = arccos⁡(𝑥𝑖)
 

 

where  𝑟𝑖 and ∅𝑖 represent the radius and angle at the time index i.  As the inner product 

cannot hold two distinct angle information, GAF elements are defined by the summation 

of two angles and ignore the radius that increases by the time index.  Thus GAF (or GASF) 

is defined as  
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𝐺𝐴𝐹 ≜⁡(

cos(∅1 + ∅1) cos(∅1 + ∅2) ⋯ cos(∅1 + ∅𝑁)

cos(∅2 + ∅1) cos(∅2 + ∅2) ⋯ cos(∅2 + ∅𝑁)
⋮ ⋮ ⋱ ⋮

cos(∅𝑁 + ∅1) cos(∅𝑁 + ∅2) ⋯ cos(∅𝑁 + ∅𝑁)

)⁡ 

 

Fig. 1 (c) represents GAF as an image of the size, 𝑁 ∗ 𝑁. 

 

 
(a)    scaled waveform                        (b) polar coord. transform of (a)                 (c) GAF image 

Fig. 1.  Time-series into GAF image 

 

2.3 GAN (Generative Adversarial Networks) 

GAN [6,7] is a machine learning algorithm that creates authentic-like new data based on 

the training dataset.  If the training dataset is a painter’s example artworks, when 

successfully learned the probability distribution of the training dataset, GAN can generate 

the synthetic artworks indistinguishable from the painter’s artworks. Creating new data is 

accomplished by the competing two modules that constitute GAN: generator G and 

discriminator network D. The generator network is analogous to counterfeiter and the 

discriminator is an expert that discerns the authenticity.  The network training is finished 

when the discriminator is deceived, so that the counterfeit output of the generator is 

considered genuine.  Once the training is done, the generator G will independently be 

deployed to create the synthetic dataset. 

 

Fig. 2.  Generative Adversarial Networks 

 

Discriminator 
D(x)  

D(x*) 
Generator 

G(z) 

Training Dataset 

z x* 

x 

Real 
Fake 
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The generator G(z) shown in Fig.2 is a mapping from latent space to the data space such 

as images x*, where z is the samples from the latent space. Note that the latent space is a 

vector space spanned by the latent variables that are not directly observable but are 

sufficient to describe the data.  The discriminator D is a mapping from image data (x or x*) 

to the probability describing that the image data is from the authentic dataset. During the 

training process, the generator network is trained to fool the discriminator with the 

feedback of the discriminator output, whereas the discriminator is trained to classify the 

images as real if the input is from training images x, or fake if the images (x*) are from the 

generator. 

2.4 CGAN (Conditional GAN) 

For a certain application we want to control the generated output images.  For example, if 

GAN is trained to generate the images of the hand-written numbers, we may want to 

generate only images having a specific number.  In that case, we need to condition GAN 

with the specific number to be shown in the generated image, which is called conditional 

GAN (CGAN) [8].  Another example in semiconductor manufacturing is to replace 

lithography simulation with CGAN so that CGAN produces a resist pattern image 

conditioned with a mask pattern [9].  CGAN is constructed to feed the specific condition 

to the generator and the discriminator as shown in Fig. 3.  The generator should create the 

image that fools the discriminator and correspond to the conditioned input image, y. 

 

Fig. 3.  Conditional Generative Adversarial Networks (CGAN) 

 

3. Architecture of PAM-4 CGAN 
The architecture of PAM4 CGAN is presented in Fig.4.  The conditional inputs to the 

CGAN are GAF images converted from the measured input waveforms and Rx tap values 

of CTLE / DFE.  The conditions direct CGAN to the real-looking BER contours.  The 

different waveforms are measured at Rx for the various channel conditions.  For each 

channel condition, we sweep Rx CTLE and DFE tap values, then collect the corresponding 

BER contours captured by Rx.  The collected contours, GAF from the measured waveforms, 

and tap values are utilized as the training set. The discriminator will be trained to determine 

whether they are real or not.  The generator output x* continues to be improved until the 

discriminator is tricked and takes x* as the real.  Once the generator output x* achieves the 

Discriminator 
D(x)  

D(x*) 
Generator 

G(z) 

Training Dataset 

z 

x* 

x 

Real 
Fake 

y 
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real-looking BER contours, the generator itself will independently produce the BER 

contour with the condition of GAF and tap values. 

 

Fig. 4.  PAM4 CGAN architecture 

 

Since we want to estimate the mapping rule between the input image GAF and the output 

image BER contour, the problem is considered as image-to-image translation with CGAN. 

As suggested in [12], our generator and discriminator architectures follow U-Net structure, 

which consists of an encoder and a decoder block [11].  U-Net was originally targeted for 

biomedical image segmentation, which is the grouping of the pixels associated with the 

same class label.  In our application, the encoder block converts the waveform image into 

feature representations at multiple levels by down-sampling the image.  The decoder learns 

to construct the BER contour by combining the extracted features from the encoder, up-

sampling the encoded features, and the tap values.  Fig. 5 shows our U-Net discriminator 

originally proposed in [13].  The encoder of U-Net discriminator classifies input image of 

synthetic / ground truth BER as real or fake and the decoder classifies on a per-pixel basis.  

Since U-Net discriminator provides the real/fake information of the input image and each 

pixel to the generator, the generated image will be improved globally and locally. 

 

 

 

 

 

 

 

Fig. 5.  Discriminator Architecture [10] 
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G(z) 
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4. PAM-4 CGAN Generation Steps 

Once we decide the architecture of PAM4 CGAN, the next step is to prepare the training 

dataset for the model.  

(Step 1) Since the goal of PAM4 CGAN is to generate BER contours conditioned by the 

received waveforms and tap values, at first, we need to measure the various waveforms 

distorted by the different channel conditions. To mimic the different channel conditions, 

the loss and the crosstalk emulators are cascaded together as shown in Fig. 6 for 30 Gbps 

PAM-4. The channel loss and crosstalk levels can be independently adjusted to emulate 

changing channel conditions with different combinations of loss and crosstalk, just as real-

life channel conditions in various systems. Due to the high loss of the crosstalk emulator, 

for 50Gbps PAM-4, we could not collect the open contours. 

 

 
 

Fig. 6.  Setup of the different channel conditions 

 

(Step 2) By varying the channel loss/crosstalk levels, the input waveforms are measured at 

Rx (victim) port with the real-time scope. The first rows in Fig. 7 are 30Gbps PAM-4 

waveforms measured at the input to the receiver and the second rows are the corresponding 

GAF images. (a) and (b) represent two different channel conditions set by the loss and 

crosstalk emulators. The GAF images are used as the input conditions to CGAN model. 

 

(Step 3) Since the output of CGAN model is BER contour, we capture the contours 

corresponding to the GAF by sweeping CTLE and DFE tap values of the receiver.  In the 

30Gbps PAM4 experiment, for each channel condition, 512 tap configurations of CTLE 

and DFE are swept and the corresponding 512 BER contours are collected. Fig. 8 shows 

the captured BER contours. In Fig. 8, the first column is GAF and the rest of the columns 

display the contours for the various CTLE and DFE tap values, while each row represents 

the different channel condition. The red color in the contours represents the zero error.  

From the contours in Fig.8, we can notice the three eyes are recovered nonlinearly, possibly 

due to the nonlinear behavior of the receiver circuit.  The overall data collection setup is 

presented in Fig. 9. 

 

     PAM4 
Tx (victim) Rx(victim) 

Channel Loss 
Emulator 

Channel Crosstalk 
Emulator 

Tx (aggressor) Rx(aggressor) 
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(a) channel #1                         (b) channel #2 

Fig. 7.  PAM-4 waveforms and the corresponding Gramian angular field 

 

 
Fig. 8.  30 Gbps PAM-4 GAF and BER contours 

 

 
 

Fig. 9.  Data collection setup for PAM4 

 

(Step 4) Once we collect the GAF and BER contour images for each channel condition, 

build the CGAN model with Python language. We use Python 3.7 with TensorFlow 2.3.0 

for the machine learning backend, pandas to read and process the data, scipy to resize the 

image, pyts to generate the GASFs, Numpy for additional processing, and scikit-learn to 

Rx 

Channel #1 

Tx 

Sweeping CTLE/DFE 

CTLE DFE 
Channel #2 

Channel #N 
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split the dataset into training/validation/testing. The training takes a few hours with GPU 

installed in a server. With the training dataset, the model will learn the nonlinear-mapping 

function between the inputs and the corresponding outputs.   

 

5. Model Evaluation 
Once the model is trained with the measured dataset, we can test the model by comparing 

the generated BER contour with the ground truth BER contour. Fig. 10 (d) represents how 

close the generated contour is to the ground truth.  The boundary of the red-colored area at 

the bottom contour shows the majority of the difference. Other than that, the generated one 

can safely replace the real contour.  

 

  
(a) GAF                         (b) True BER                  (c) Generated BER        (d) Difference of  (b) and (c) 

Fig. 10.  Comparison of the generated with the ground truth BER contour 

 

We can also show the horizontal BTC (Bathtub Curve) and vertical BTC comparison by 

cutting BER contours following the lines shown in Fig. 11(g).  Fig. 11 (a)-(c) show the 

three horizontal BTCs cut at the center of one third area.  Fig. 11 (d)-(f) show the three 

vertical BTCs cut by three vertical lines shown in Fig.11 (g). The black dotted ones are 

from the generated contours.  The horizontal and vertical BTCs are well correlated with 

the generated horizontal and vertical BTCs. 

 

 
(a) 1st horizontal BTC                    (b)  2nd horizontal BTC                 (c)  3rd horizontal BTC 
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(d) 1st vertical BTC                    (e)  2nd vertical BTC                 (f)  3rd vertical BTC 

 

 
(g)  Cut locations of horizontal and vertical Bathtubs on the generated and true BER contour 
 

Fig. 11.  Horizontal and vertical BTC comparison of the generated and ground truth BER contour 

 

 

To evaluate the overall model quality of the trained PAM4 CGAN, we apply the test dataset 

of the different channel conditions and calculate the image difference of the generated and 

ground truth BER contours. The different amount of the loss and crosstalk is configured 

by setting the emulators with the percentage as shown in Fig. 13.  

For each channel condition from channel loss, 𝑙 = [0,20,40,60]%  and the crosstalk, 𝑐 =
[0,10,20,30,40,50,60]%, we collect 𝑀𝑙𝑐 number of ground truth BER contours for the test. 

Let’s assume N is the total number of the pixels in a contour image, 𝐴𝑚𝑛 is nth pixel value 

of a ground truth contour from mth test file in a channel condition,⁡(𝑙, 𝑐), and 𝑔𝑚𝑛 is nth 

pixel value of a generated contour from mth tap configuration and GAF corresponding to 

a channel condition, (𝑙, 𝑐). Then we can calculate the image difference with MAPE (Mean 

Absolute Percentage Error) as shown in the following: 

𝑀𝐴𝑃𝐸(𝑙, 𝑐) =
1

𝑀𝑙𝑐
∑ (100 ∗

1

𝑁
∑ |

𝐴𝑚𝑛 − 𝑔𝑚𝑛

𝐴𝑚𝑛
|

𝑁

𝑛=1

)

𝑀𝑙𝑐

𝑚=1

 

The MAPE distribution with respect to the channel condition is shown in Fig. 12.  Note the 

legend represents the channel loss.  The worst MAPE value is 2.5% when the channel loss 

is 40% and the crosstalk 60%.  From this result, we can conclude the data-driven PAM4 

CGAN model generates the BER contours with the high accuracy across the various 

channel conditions. 
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Fig. 12.  Error distribution of the generated BER contours with the test dataset 

 

   

(a) channel loss (Sdd21 vs frequency)                    (b)  Crosstalk vs frequency 

 

Fig. 13.  Channel condition configuration by loss and crosstalk emulator 

 

6. Conclusion 

 

This paper presents a data-driven approach to modeling a high-speed PAM4 SerDes 

receiver with the help of a CGAN. We demonstrate the model’s ability to handle different 

bitstreams, channel conditions with loss and crosstalk, and DFE and CTLE tap 

configurations. We show that the generated BER contour plots match the ground-truth BER 

plots visually, and multiple vertical and horizontal bathtub curves at the lower, center and 

upper eyes show high correlation. Moreover, we analyze the eye characteristics with 

respect to the ground-truth BER plots and show that the generated contour errors MAPE is 

less than 2.5%. We believe this data driven, deep learning approach has high potential to 

model multi-physics problems such as electrical to optical channels or electrical power to 

thermal distribution models. Since the model is not physics based and only relies on output 
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measures as training data, we can feed electrical/optical BER plots or thermal distribution 

to the modelling engine. Also, from our previous DesignCon paper [14], high dimensional 

channel and SerDes equalization structures can be mapped to a lower dimension space 

through machine learning techniques such as principal component analysis (PCA). The 

CGAN model can be further simplified by modelling the channel and equalization 

conditions in lower dimension PCA vector conditions. 
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